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A ferromagnetic film

The magnetisation vector M = M(x, y, t)

M2(x,y,t) = M?, we typically normalise m = M /M, thus m? = 1.

The skyrmion number

is a topological invariant and it counts the number of times that the
magnetisation configuration M covers the sphere m? = 1.
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Antisymmetric exchange interaction:
Dzyaloshinskii-Moriya (DM) materials

A typical and minimal energy functional for m = (mj, mo, m3) is

E = Eex + Ea + EDM-

o The usual symmetric exchange energy
1 2
EeX:§ Oym - 0,md°x, w=12.
e An easy-axis anisotropy energy (with constant K > 0)
K
= 5 /(m% + m3) dx.

o An exchange of the Dzyaloshinskii-Moriya type (A = %1)

EDM:)\/m-(me)dQX.
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The Landau-Lifshitz (LL) equation

The conservative (Hamiltonian) LL equation associated with the energy is

om

E:—mxf, m? =1
fE—5—E:Am+nm3e3—2)\me.
om
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Static solutions in a flm: m X f =0

Skyrmion (Q = 1) Skyrmionium (Q = 0)

i Stable excited states for x > (m2/4)\?
o/ [A. N. Bogdanov and A. Hubert (1999)]
Skyrmion |
- [ — Existence: [Melcher, Proc. R. Soc. A 2014]
Skyrmionium-type configs (no DM):
\ ) [Moutafis, et al, PRB (2007)]
e [Finazzi, et al, PRL (2013)]
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Phase diagram (sketch)
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H: helix, FM: ferromagnetic state, SkX: skyrmion lattice (ground states)
Sk: skyrmion, Skm: skyrmionium (excited states)

he =72/16, hy~ 0.8, ke = w2 /4.
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Dynamics of skyrmions

Fundamental relation for evolution of topological density [Papanicolaou,
Tomaras, 19917:

§g=—€u0u(f-0m) =e€,,0,0x0,\, p,v,A=1,2

where f - aum = —aya;w.
The tensor 0, has components

1
o =3 (Oom - om — Oym - Oym) + E(m% + m3) + A(m10am3 — m3Oamy

2
019 = — 81m 0 82111 aF /\(m361m1 — m181m3)
091 = — 811’1‘1 . (92111 —+ )\(m282m3 - m382m2)

1
g929 25 (81m g Blm — 82m o 82111) TF g(m% aF m%) TF )\(m381m2 — m281m3

Dynamics of skyrmions in chiral ferromagnets



Dynamics of skyrmions: /,,

Define the moments of topological density g:
Iy = /xuqd2x w=172.

Prove that they are conserved }u = 0 (by application of fundamental

relation in previous page).

A rigid translation of spatial coordinates by a constant vector

Xy = xy+cy = ly— 1, +47Qc,

reveals difference in dynamics between topological (Q # 0) and
non-topological (Q = 0) magnetic solitons.
e For Q # 0, the (/1,/2) gives position of skyrmion (it is fixed).

e For Q = 0, skyrmions may propagate freely (solitary waves).
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Q@ = 0 skyrmionium as a traveling wave

Assume propagating skyrmionium with velocity v (solitary wave). We
make the traveling wave ansatz m = m(x — vt,y) and this satisfies
Om

v— =m X f.
X

We find numerically traveling solutions for 0 < v < v, ~ 0.102

v=20 v=0.07

—6 -3 0 3 —6 -3 0 3
T

m3 contour plots (solid lines: m3 > 0, dashed lines: m3 < 0)
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Energy — Momentum relation

The linear momentum P = (P, Py) is defined by

20

0.00 0.02 0.04 0.06 0.08 0.1 B 10 20 3
v bl

1
(P1 =) P=muo, E=Ey+ §m02, B

We may associate a mass (m) to the skyrmionium

(Newtonian)

2
At low momenta E = Eg + g—m
(relativistic).

At high momenta E ~ v, P
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Force and acceleration on a Q = 0 skyrmionium
Apply an external non-homogeneous magnetic field, e.g.,
h =(0,0,h), h=gx.
The force changes the linear momentum
P, = —/8Xh(1 —m3)d’x, P, =0.
t

Force for + < 100 =0 t =160

50 100 150 200 =10 =5 0 5 10 =10 =5 0
t T T

Skyrmion dynamics for Q = 0

When forced it accelerates. Propagates freely in the absence of force.
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Force on Q = 1 skyrmions

Apply a magnetic field gradient

Skew deflection of

magnetic bubbles in

field-gradient

[Malozemoff, Slonczewski,
“Magnetic Domain Walls in
Bubble Materials”, 1979]

h = (0,0,h), h=gy.

4
A

10pm
—A

Fig. 13.2. Initial and final normal photographs and nine intermediate superimposed high-
speed photographs of a hard bubble at the end of each of a sequence of nine gradient pulses of
length 2 psec and strength H, = [rVH,| = 4.5 Oe oriented as indicated in a EuGaYIG film. The
overall direction of the bubble motion illustrates the skew deflection of hard bubbles and the
elliptical transient shape suggests a bunching effect. The horizontal lines indicate the center
line of the gradient (after Patterson et al**7)
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Hall motion of @ = 1 skyrmion

We follow the skyrmion guiding center R = (R1, R2):

R, = 7/M = 71 /X qd2X.
o 4rQ 470 i

The evolution equations are calculated as

R, =0, R, =-— 47ro/8h

Skyrmion dynamics for Q # 0

When forced, propagates with constant velocity.
It is spontaneously pinned in the absence of force.
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Skyrmion dynamics under spin-transfer torque (and damping)

The equation of motion is
(O +udy)m=—-mxf+m x (ad; + fud;) m

where [3,u are the spin torque parameters and « the damping.
For a = 8 we get

(O +udy)m=-mxf+amx (0, +ud)m

that is, the LLG where the time derivative is 0; + ud;.
Consider the traveling wave m(xj, x2,t) = mg(x; — ut, x2), for which
Om = —udim. The equation reduces to the static LL:

mxf=0.

Skyrmion dynamics for @ = (3

If we apply spin torque to a static solution (skyrmion) of the LL then
this is set in motion with velocity (u,0).
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Skyrmionium dynamics under spin-transfer torque

For a # [3, assume traveling configuration with velocity (v, 0):
(u—v)0m=-—m xf+ (fu—av)m x Oym
We set v = Su/a and have
(v—u)0im=-m x f

that is, the LL for a traveling wave — already solved for a skyrmionium.

Traveling wave

A skyrmionium traveling with velocity ¥ under spin torque is identical to a
skyrmionium traveling with velocity ¥ — u in the LL (without spin torque).
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Simulation of skyrmionium dynamics

Spin torque is applied to a static skyrmionium at time t = 0. Velocity

components (vl (t), V2 (t))

Parameter values a = 0.06, u=0.1, S =0.1.

(v1,v2) — (0.167,0)

Skyrmionium at time =0 and t = 40.
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Set a skyrmionium into free motion using spin torque

Prescription

Consider a static skyrmionium
o Apply spin current for long enough time.
o The skyrmionium is set in motion with velocity v = fu/«.
e Switch-off the current.

@ The skyrmionium continues free motion with velocity v — u.

For o # (3 the configuration is deformed by the spin current and is set
in motion. After switching off the current it continues propagating but its

velocity is reduced by u.
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Concluding remarks

e The Dzyaloshinskii-Moriya interaction in ferromagnetic materials
supports both topological and non-topological magnetic
configurations.

e A topological Q # 0 skyrmion is pinned in a ferromagnetic film. It
moves perpendicular to an applied force. The dynamics is analogous

to the motion of an electron in a perpendicular magnetic field.

e A non-topological @ = 0 skyrmionium may move freely as a
solitary wave. It responds as a Newtonian particle to forces.

e A skyrmionium can be set into free motion using external forces or

a spin current.
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